
LLNL-TR-658406

Math Parsing in the Virtual Beam
Line Code

B. J. Kraines

August 8, 2014

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States
government. Neither the United States government nor Lawrence Livermore National Security, LLC,
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States government or Lawrence Livermore National Security, LLC. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the United States government or
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product
endorsement purposes.

This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore
National Laboratory under Contract DE-AC52-07NA27344.

Math Parsing in the Virtual Beam Line Code

Benjamin Kraines

August 5, 2014

Abstract

Using a Java Math Parsing Library, several important usability fea-
tures were added to the Virtual Beam Line (VBL) Code. Equations can
represent numerical physical properties of laser beams and other optical
components within the code. New sets of global constants allow users to
dynamically define parameters and open new possibilities for future laser
physics calculations in VBL.

Contents
1 Introduction 2

2 Parsing Math in Code 2
2.1 Human Readable vs. Computer Readable 2
2.2 Dijkstra’s Shunting Yard Algorithm 3

3 Math Parsing in The Virtual Beam Line code 5
3.1 Exp4J Library . 5
3.2 Shell Class for Equation Parsing 6

4 Results & Use Cases 6
4.1 Beam Profile at Injection . 6
4.2 Temporal Profiles . 8
4.3 Gain Profiles . 9
4.4 Phase Change Application . 10
4.5 Constants . 10

5 Conclusion 12

1

1 Introduction

The Virtual Beam Line (VBL) Code is a powerful tool in modeling laser prop-
agation, especially in the context of the National Ignition Facility (NIF). The
code provides a quasi-scripting language which enables the user to precisely
control all aspects of the simulation, in which the beam travels though space
and amongst any number of optical components. This Java code required a
number of auxiliary file inputs, which were at times unwieldy and required pre-
processing to occur before any calculations could be run within VBL. Adding a
new interface capability to replace these file inputs would save time and increase
flexibility of input for the code as a whole. In many cases, an equation can be
used to represent the data held discretely in auxiliary files. Thus, adding math
parsing capability in the code would allow equations to replace the file inputs.
Using some well established techniques in Computer Science and readily avail-
able libraries to support them, this parsing option was implemented in the VBL
code.

2 Parsing Math in Code

A grand challenge in the Computer Science of yesteryear was to apply computa-
tional techniques to equations we typically would write and evaluate as humans.
Issues of operator precedence and symbolic interpretation were historically bar-
riers to this process. Techniques have been developed to handle these problems
with reliability, and are applied in the Equation Parser in VBL.

2.1 Human Readable vs. Computer Readable

There is a stark contrast between the way that a computer might read an
expression efficiently, and the way humans do. People generally write equations
in infix notation. That is, the operators are interspersed between the values
and the equation is read from left to right, but not necessarily evaluated left
to right in order. This is a problem for computers, because data structures
use a specific order inherently. As such, a new format is required to make an
expression computer readable. There are two main expression formats used in
today’s computer science. The first is prefix notation. It takes the operators
and places them to left of the operators to which it applies. This simple example
shows an infix expression on the left, translated to a prefix notation on the right.

6 + 7→ + 6 7

The second prominent format for computer readable is just the opposite, postfix
notation. This involves placing the operators after the operands to which they
apply, as seen in the example below.

6 + 7→ 6 7 +

2

Once the expression is placed in some computer readable format, a concrete
set of rules applies to evaluate them. For example, in the postfix notation the
algorithm can simply traverse the expression until it finds an operator, then
apply that operator to the previous two operands that it finds. This process is
easily scalable to more complex expressions, as seen below in this infix to postfix
conversion.

5(6 + 7)− 8→ 67 + 5 ∗ 8 −

In the above example, the algorithm would traverse the postfix representation
left to right. It would start by stepping to the first operator, then evaluating
the two operands to the left: 6 and 7. Then the algorithm steps through to the
multiplication. It looks for two multiplying operands to its left: the result of
6+7 and the 5. This process can simply iterate until the whole expression is
evaluated.

2.2 Dijkstra’s Shunting Yard Algorithm

The British term for rail yard is ”Shunting Yard”. Dijkstra’s Shunting yard
algorithm solves expressions by rearranging operators and operands much like
engineers might rearrange train cars in a rail yard.

Figure 1: A rail yard.

3

Dijkstra envisions a switching track connected to some main line, where train
cars can depart from the sequential main line, be rearranged, and then be passed
back onto the main line. In this analogy, train cars would be operators and
operands in an infix expression on the main line. A stack data structure can
represent the switching track, as it is a Last-In-First-Out (LIFO) structure.
Operators are always pushed onto the stack, and operands always follow the
”main line”. Then Dijkstra uses some logic blocks to sort out when the operators
need to get pushed in with the operands to generate postfix. The basic idea can
be shown in the following diagram.

Figure 2: Shunting Yard Algorithm Visualization

4

The diagram above shows the basic data flow as the algorithm processes a
simple algebraic statement from infix notation. As the program iterates over
the expression from left to right it utilizes parenthesis and a preset operator
hierarchy that determines when the operator gets pushed off the stack. In
the example above, we see that the multiplication operator has the highest
precedence. Hence it gets popped along with the addition after step d, when
the subtraction operator appears at the switch. The addition has an equal
precedence, but earlier time of arrival than the subtraction operator, so it gets
pushed to the output expression as well. This process continues until the whole
expression is transformed into infix notation. Once the expression is transformed
fully into postfix, then the algorithm traverses it, evaluating postfix, as described
in section 2.1.

3 Math Parsing in The Virtual Beam Line code

The Virtual Beam Line code’s primary data structure is physical field values on a
spatial grid. As laser beams propagate in the system, they occupy a space in the
x,y, and z axis. Parameters of the beam’s state can be characterized by the x/y
position of the point under consideration. For example, a phase distribution
might characterize the phase at each x/y pair in the beam’s grid for a given
beam state. In addition, the components with which the beam interacts are
similarly defined by spatial grids. Slab amplifiers for the laser have a unique
gain distribution that amplifies the beam differently based upon the location
that part of the beam might be incident upon the slab spatially. Traditionally,
these distributions had to be manually inputted using discrete auxiliary files,
even though these distributions can be represented by continuous functions.
Adding a capability to VBL for transforming these continuous math functions
into the discrete distributions already used provides a flexible new way for users
to experiment and provide input in a new way.

3.1 Exp4J Library

One open source library for Java which supports expression parsing is the Exp4J
(Expressions for Java) Library. It features the previously discussed Shunting
Yard Algorithm and provides a very helpful Application Programming Inter-
face (API) to access this parsing capability. The library features modifiable
operator precedence options, custom functions, flexible variables, and easy inte-
gration. It stands out among other Java math parsing libraries in these respects.
Some other libraries were tested as potential options for this role, including Ex-
pressionOasis, and Java Expression Parser. Exp4J ended up being the most
powerful math parsing tool available that would fit well within the VBL code
structure.

5

3.2 Shell Class for Equation Parsing

In order to make the Exp4J library useful, VBL needed a shell class that handles
all math expression evaluation. A class called EquationParse was created to fill
that need. At any time, VBL can instantiate an EquationParse object and use
it to process a given string containing an infix expression. The shell class holds
a series of member variables which govern the specifics of evaluating functions.
Member data includes the infix string input, a variable dictionary, a calculation
object from Exp4J, and a VBL Path object. The EquationParse shell class
also holds a series of utility functions that assist the VBL objects that use the
Equation Parser. These include functions to create distributions over specific
x/y grids, utilities to write aux files out for the user, and other distribution
related numerical functions.

4 Results & Use Cases

Math parsing was successfully implemented into VBL with a number of im-
portant new use cases for laser physics calculations. Each different application
uses the same EquationParse shell class to perform its unique action set in the
context of equations.

4.1 Beam Profile at Injection

One of the first things VBL does is inject a beam into the beamline. This
involves specifying the shape, energy, size, and other parameters of the initial
beam. Previously, the only ways to do this was using a template square or
Gaussian beam profile, or using an auxiliary file. Equations supplement these
input options by allowing the spatial definition of fluence at the input. From this
distribution, the shape can be scaled to a new energy, or the inherent energy of
the distribution can infer the total energy of the beam. An example of creating
a new equation defined injection fluence profile might look like this:

Figure 3: Beam injection statement using equations.

This statement would inject a Gaussian beam according to the equation:

e−
x
8
2− y

8
2

6

VBL would then scale this profile such that the total energy is equal to 100e-04
kJ, as specified by the energy keyword. The pulse would last one nanosecond,
per the tpulse parameter. The beam would look something like Figure 4 at
VBL’s fluence output, placed just after injection.

Figure 4: VBL output after equation injection.

7

4.2 Temporal Profiles

In addition to specifying the fluence profiles of beams, the power of a pulse
over time can be shaped using an equation. In the NIF, the pulse shape is an
extremely important characteristic of the beam. Thus, being able to precisely
control and experiment with this characteristic in simulation might be helpful.

Figure 5: A temporal power trace from equations in VBL.

8

4.3 Gain Profiles

When a beam passes through a slab amplifier, the laser gains energy often times
in a non-uniform way. Some parts of the beam might absorb more energy than
others. For this reason, when simulating the amplifiers,specified gain profiles
must be interpolated to represent the distribution of gain spatially on a beam
incident to the slab. A simple example of how to specify a gain profile equation
in VBL is shown in Figure 5.

Figure 6: A deck utilizing equation gain profiles in VBL.

9

4.4 Phase Change Application

As a laser beam moves through optics, it often accrues phase changes that can
affect the way that it propagates. These are called aberrations. In a beam
defined spatially, a phase applied to that beam is also defined spatially. Thus in
the application of an aberration, an equation can be entered in terms of x and
y to change the beam’s phase. An example of how to specify a phase equation
in VBL is seen in Figure 6.

Figure 7: A deck utilizing equation aberration profiles in VBL.

4.5 Constants

When creating large VBL decks using many parameters, it becomes cumbersome
to repeatedly enter the same constants in different components throughout the

10

deck. As a user, it is easy to lose track of the significance for the literal numerical
values. By adding constants, VBL provides a structure to maintain context and
assist in deck stewardship. Previously in VBL, macros were present to perform
text replacement and generally support this function. However since macros
only do simple text replace, they weren’t dynamic within the code. Global
constants can provide this flexibility. Using the EquationParse shell, constants
can now be defined in VBL at the beginning of the deck, and then used later with
math operations. Anywhere in the code, the user can open a set of brackets and
write a constant, manipulated by any math they so choose. An brief example
showing global constant usage is seen in Figure 7.

Figure 8: A deck utilizing global math constants in VBL.

11

5 Conclusion

Adding math parsing and global constants to the Virtual Beam Line code in-
creases the flexibility of input and use for simulating laser propagation. Users
can now enter equations to represent physical characteristics of laser beams
or optical components when creating new VBL decks. These equations are
translated to numerical distributions using a parsing library featuring Dijk-
stra’s shunting yard algorithm. Constants can be placed anywhere in a VBL
deck and be parsed as is to increase the flexibility and ease of problem setup for
users. Overall, the new math parsing abilities of VBL extend the usability and
function of the code in a unique way.

References

[1] R.A.Sacks, E. Feigenbaum, K.P. McCandless, D. Potter.
VBL User Guide v1.7.9
Laser Performance Modeling Group, National Ignition Facility
April 2014

[2] Frank Asseg
Exp4J 0.4.0 and API Guide Apache License, Version 2.0
http://www.objecthunter.net/exp4j/

[3] Saliz Alba
”Shunting Yard”
Licensed under Creative Commons Attribution-Share Alike 3.0
http://commons.wikimedia.org/wiki/File:Shunting_yard.svg

[4] Arne Huckelheim
”Frankfurt Central Station Tracks”
Licensed under Creative Commons Attribution-Share Alike 3.0
http://upload.wikimedia.org/wikipedia/commons/2/26/

SunsetTracksCrop.JPG

This work was performed under the auspices of the U.S. Department of En-
ergy by Lawrence Livermore National Laboratory under Contract DE-AC52-
07NA27344.

12

